
DEEP LEARNING FOR COMPUTER ARCHITECTS (SYNTHESIS LECTURES By Paul Whatmough
US $75,95US $75,95
Cz, 03 lip, 14:15Cz, 03 lip, 14:15
Zdjęcie 1 z 1

Galeria
Zdjęcie 1 z 1

Masz taki przedmiot na sprzedaż?
DEEP LEARNING FOR COMPUTER ARCHITECTS (SYNTHESIS LECTURES By Paul Whatmough
~ Quick Free Delivery in 2-14 days. 100% Satisfaction ~
US $75,95
Około278,34 zł
Stan:
“Book is in typical used-Good Condition. Will show signs of wear to cover and/or pages. There may be ”... Zobacz więcejinformacji o stanie
Dobry
Książka, która była czytana, ale nadal jest w dobrym stanie. Na okładce widoczne są nieznaczne ślady używania, np. zadrapania, ale książka nie jest rozerwana i nie ma dziur. Przy książkach w twardej oprawie mogą brakować obwoluty. Większość stron jest nieuszkodzona tzn., że ewentualne zagięcia lub rozdarcia są sporadyczne, podkreślenia ołówkiem są minimalne i nie ma żadnych zaznaczeń markerem czy notatek na marginesach. Książka ma wszystkie strony. Aby poznać więcej szczegółów i opis uszkodzeń lub wad, zobacz aukcję sprzedającego.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Wysyłka:
Bezpłatnie Economy Shipping.
Znajduje się w: US, Stany Zjednoczone
Dostawa:
Szacowana między So, 9 sie a Śr, 13 sie do 94104
Zwroty:
Zwrot w ciągu 30 dni. Za wysyłkę zwrotną płaci sprzedawca.
Płatności:
Kupuj bez obaw
Sprzedawca ponosi pełną odpowiedzialność za wystawienie tej oferty sprzedaży.
Nr przedmiotu eBay: 336018753630
Parametry przedmiotu
- Stan
- Dobry
- Uwagi sprzedawcy
- ISBN-10
- 1627057285
- Book Title
- Deep Learning for Computer Architects (Synthesis Lectures on
- ISBN
- 9781627057288
O tym produkcie
Product Identifiers
Publisher
Morgan & Claypool Publishers
ISBN-10
1627057285
ISBN-13
9781627057288
eBay Product ID (ePID)
240299249
Product Key Features
Number of Pages
123 Pages
Language
English
Publication Name
Deep Learning for Computer Architects
Publication Year
2017
Subject
Systems Architecture / General, Intelligence (Ai) & Semantics, Neural Networks
Type
Textbook
Subject Area
Computers
Series
Synthesis Lectures on Computer Architecture Ser.
Format
Trade Paperback
Dimensions
Item Height
0.3 in
Item Weight
8 Oz
Item Length
9.2 in
Item Width
7.5 in
Additional Product Features
Intended Audience
Trade
Illustrated
Yes
Table Of Content
Preface Introduction Foundations of Deep Learning Methods and Models Neural Network Accelerator Optimization: A Case Study A Literature Survey and Review Conclusion Bibliography Authors' Biographies
Synopsis
This is a primer written for computer architects in the new and rapidly evolving field of deep learning. It reviews how machine learning has evolved since its inception in the 1960s and tracks the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. It also reviews representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, it also details the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, it presents a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context., A primer for computer architects in a new and rapidly evolving field. The authors review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that have emerged in the last decade., This is a primer written for computer architects in the new and rapidly evolving field of deep learning . It reviews how machine learning has evolved since its inception in the 1960s and tracks the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. It also reviews representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, it also details the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, it presents a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.
Opis przedmiotu podany przez sprzedawcę
Informacje o sprzedawcy-firmie
O tym sprzedawcy
ZUBER
97,9% opinii pozytywnych•Sprzedane przedmioty: 965 tys.
Zarejestrowany jako sprzedawca-firma
Popularne kategorie z tego Sklepu
Opinie sprzedawcy (296 000)
Ten przedmiot (1)
Wszystkie przedmioty (296 000)
- e***l (811)- Opinie wystawione przez kupującego.Ostatni miesiącZakup potwierdzonyLow cost, fast shipping, probably in good condition, A+ ebayer.
- e***l (1559)- Opinie wystawione przez kupującego.Ostatni miesiącZakup potwierdzonyGreat item, well packed - excellent seller
- t***r (14)- Opinie wystawione przez kupującego.Ostatni miesiącZakup potwierdzonyDe verkoper is zeer communicatief en hield mij zorgvuldig op de hoogte van de verzendstatus van de cd. Ik beveel deze verkoper van harte aan aan andere kopers. Uitstekende service en de bestelde cd is in nieuwstaat👍
- r***1 (1)- Opinie wystawione przez kupującego.Ostatni miesiącZakup potwierdzonyI've had this precious book on my personal Wishlist for quite some time - and it's not easy finding a Hardcover copy online and in great condition. Despite my initial reservations about purchasing second hand, I couldn't be happier. Thank You!